Benefit of simultaneous recording of EEG and MEG in dipole localization.

نویسندگان

  • Harumi Yoshinaga
  • Tomoyuki Nakahori
  • Yoko Ohtsuka
  • Eiji Oka
  • Yoshihiro Kitamura
  • Hideki Kiriyama
  • Kazumasa Kinugasa
  • Keiichi Miyamoto
  • Toru Hoshida
چکیده

PURPOSE In this study, we tried to show that EEG and magnetoencephalography (MEG) are clinically complementary to each other and that a combination of both technologies is useful for the precise diagnosis of epileptic focus. METHODS We recorded EEGs and MEGs simultaneously and analyzed dipoles in seven patients with intractable localization-related epilepsy. MEG dipoles were analyzed by using a BTI Magnes 148-channel magnetometer. EEG dipoles were analyzed by using a realistically shaped four-layered head model (scalp-skull-fluid-brain) built from 2.0-mm slice magnetic resonance imaging (MRI) images. RESULTS (a) In two of seven patients, MEG could not detect any epileptiform discharges, whereas EEG showed clear spikes. However, dipoles estimated from the MEG data corresponding to the early phase of EEG spikes clustered at a location close to that of the EEG-detected dipole. (b) In two of seven patients, EEG showed only intermittent high-voltage slow waves (HVSs) without definite spikes. However, MEG showed clear epileptiform discharges preceding these EEG-detected HVSs. Dipoles estimated for these EEG-detected HVSs were located at a location close to that of the MEG-detected dipoles. (c) Based on the agreement of the results of these two techniques, surgical resection was performed in one patient with good results. CONCLUSIONS Dipole modeling of epileptiform activity by MEG and EEG sometimes provides information not obtainable with either modality used alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study of dipole localization accuracy for MEG and EEG using a human skull phantom.

OBJECTIVE To investigate the accuracy of forward and inverse techniques for EEG and MEG dipole localization. DESIGN AND METHODS A human skull phantom was constructed with brain, skull and scalp layers and realistic relative conductivities. Thirty two independent current dipoles were distributed within the 'brain' region and EEG and MEG data collected separately for each dipole. The true dipol...

متن کامل

Simultaneous EEG/MEG and ECoG source characterization of interictal spikes

For some TLE patients that do not respond the pharmacological treatment, epilepsy surgery is an option. In those cases, the determination of the location of the sources and the sequence in which they become active is of prime importance. In this paper, we investigate the interpretability and validity of dipole source localization based on EEG, MEG and simultaneous EEG+MEG for TLE interictal spi...

متن کامل

Error bounds for EEG and MEG dipole source localization.

General formulas are presented for computing a lower bound on localization and moment error for electroencephalographic (EEG) or magnetoencephalographic (MEG) current source dipole models with arbitrary sensor array geometry. Specific EEG and MEG formulas are presented for multiple dipoles in a head model with 4 spherical shells. Localization error bounds are presented for both EEG and MEG for ...

متن کامل

Interpretation of MEG spike source localization in frontal lobe epilepsy with multiple independent spike foci

Magnetic source imaging using a whole-head MEG system provides a more accurate localization of epileptic focus than other routinely used noninvasive methods such as scalp video EEG and magnetic resonance imaging (MRI) [1-3]. However, MEG source localization, as estimated by the single dipole and spherical model, may not fully describe an epileptic region that includes extensive or multiple epil...

متن کامل

Simultaneous 3-T fMRI and high-density recording of human auditory evoked potentials.

We acquired simultaneous high-field (3 T) functional magnetic resonance imaging (fMRI) and high-density (64- and 128-channel) EEG using a sparse sampling technique to measure auditory cortical activity generated by right ear stimulus presentation. Using dipole source localization, we showed that the anatomical location of the grand mean equivalent dipole of auditory evoked potentials (AEPs) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Epilepsia

دوره 43 8  شماره 

صفحات  -

تاریخ انتشار 2002